Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Biotechnol Appl Biochem ; 2022 Apr 09.
Article in English | MEDLINE | ID: covidwho-2288289

ABSTRACT

Since the onset of the coronavirus disease 2019 (COVID-19) pandemic, the clinical manifestations of the virus have undergone many changes. Recently, there have been many reports on gastrointestinal symptoms in COVID-19 patients. This study is aimed to perform a detailed phylogenetic study and assessment of different SNVs in the RNA genome of viruses isolated from fecal samples of patients with COVID-19 who have gastrointestinal symptoms, which can help better understand viral pathogenesis. In the present study, 20 fecal samples were collected by written consent from COVID-19 patients. According to the manufacturer's protocol, virus nucleic acid was extracted from stool samples and the SARS-CoV-2 genome presence in stool samples was confirmed by RT-PCR assay. Three viral genes, S, nsp12, and nsp2, were amplified using the reverse transcription polymerase chain reaction (RT-PCR) method and specific primers. Multiple sequencing alignment (MSA) was performed in the CLC word bench, and a phylogenetic tree was generated by MEGA X based on the neighbor-joining method. Of all cases, 11 (55%) were males. The mean age of the patients was 33.6 years. Diabetes (70%) and blood pressure (55%) were the most prevalent comorbidities. All 20 patients were positive for SARS-CoV-2 infection in respiratory samples. Molecular analysis investigation among 20 stool samples revealed that the SARS-CoV-2 genome was found among 10 stool samples; only three samples were used for sequencing. The polymorphism and phylogenetic analysis in SARS-CoV-2 showed great similarity among all of the evaluated genes with the Wuhan reference sequence and all of the current variants of concern (VOCs). The current study represents a great similarity in polymorphism and phylogenetic analysis of the SARS-CoV-2 isolates with the Wuhan reference sequence and all of the current VOC in the particular evaluated partial sequences of S, nsp12, and nsp2.

2.
J Enzyme Inhib Med Chem ; 38(1):24-35, 2023.
Article in English | PubMed | ID: covidwho-2240349

ABSTRACT

Ligand-based drug design methods are thought to require large experimental datasets to become useful for virtual screening. In this work, we propose a computational strategy to design novel inhibitors of coronavirus main protease, M(pro). The pipeline integrates publicly available screening and binding affinity data in a two-stage machine-learning model using the recent MACAW embeddings. Once trained, the model can be deployed to rapidly screen large libraries of molecules in silico. Several hundred thousand compounds were virtually screened and 10 of them were selected for experimental testing. From these 10 compounds, 8 showed a clear inhibitory effect on recombinant M(pro), with half-maximal inhibitory concentration values (IC(50)) in the range 0.18-18.82 μM. Cellular assays were also conducted to evaluate cytotoxic, haemolytic, and antiviral properties. A promising lead compound against coronavirus M(pro) was identified with dose-dependent inhibition of virus infectivity and minimal toxicity on human MRC-5 cells.

3.
Saudi Pharm J ; 31(2): 228-244, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2238542

ABSTRACT

MERS-CoV belongs to the coronavirus group. Recent years have seen a rash of coronavirus epidemics. In June 2012, MERS-CoV was discovered in the Kingdom of Saudi Arabia, with 2,591 MERSA cases confirmed by lab tests by the end of August 2022 and 894 deaths at a case-fatality ratio (CFR) of 34.5% documented worldwide. Saudi Arabia reported the majority of these cases, with 2,184 cases and 813 deaths (CFR: 37.2%), necessitating a thorough understanding of the molecular machinery of MERS-CoV. To develop antiviral medicines, illustrative investigation of the protein in coronavirus subunits are required to increase our understanding of the subject. In this study, recombinant expression and purification of MERS-CoV (PLpro), a primary goal for the development of 22 new inhibitors, were completed using a high throughput screening methodology that employed fragment-based libraries in conjunction with structure-based virtual screening. Compounds 2, 7, and 20, showed significant biological activity. Moreover, a docking analysis revealed that the three compounds had favorable binding mood and binding free energy. Molecular dynamic simulation demonstrated the stability of compound 2 (2-((Benzimidazol-2-yl) thio)-1-arylethan-1-ones) the strongest inhibitory activity against the PLpro enzyme. In addition, disubstitutions at the meta and para locations are the only substitutions that may boost the inhibitory action against PLpro. Compound 2 was chosen as a MERS-CoV PLpro inhibitor after passing absorption, distribution, metabolism, and excretion studies; however, further investigations are required.

4.
Arab J Chem ; 16(5): 104654, 2023 May.
Article in English | MEDLINE | ID: covidwho-2232296

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-mediated coronavirus disease 2019 (COVID-19) infection remains a global pandemic and health emergency with overwhelming social and economic impacts throughout the world. Therapeutics for COVID-19 are limited to only remdesivir; therefore, there is a need for combined, multidisciplinary efforts to develop new therapeutic molecules and explore the effectiveness of existing drugs against SARS-CoV-2. In the present study, we reported eight (SCOV-L-02, SCOV-L-09, SCOV-L-10, SCOV-L-11, SCOV-L-15, SCOV-L-18, SCOV-L-22, and SCOV-L-23) novel structurally related small-molecule derivatives of niclosamide (SCOV-L series) for their targeting potential against angiotensin-converting enzyme-2 (ACE2), type II transmembrane serine protease (TMPRSS2), and SARS-COV-2 nonstructural proteins (NSPs) including NSP5 (3CLpro), NSP3 (PLpro), and RdRp. Our correlation analysis suggested that ACE2 and TMPRSS2 modulate host immune response via regulation of immune-infiltrating cells at the site of tissue/organs entries. In addition, we identified some TMPRSS2 and ACE2 microRNAs target regulatory networks in SARS-CoV-2 infection and thus open up a new window for microRNAs-based therapy for the treatment of SARS-CoV-2 infection. Our in vitro study revealed that with the exception of SCOV-L-11 and SCOV-L-23 which were non-active, the SCOV-L series exhibited strict antiproliferative activities and non-cytotoxic effects against ACE2- and TMPRSS2-expressing cells. Our molecular docking for the analysis of receptor-ligand interactions revealed that SCOV-L series demonstrated high ligand binding efficacies (at higher levels than clinical drugs) against the ACE2, TMPRSS2, and SARS-COV-2 NSPs. SCOV-L-18, SCOV-L-15, and SCOV-L-09 were particularly found to exhibit strong binding affinities with three key SARS-CoV-2's proteins: 3CLpro, PLpro, and RdRp. These compounds bind to the several catalytic residues of the proteins, and satisfied the criteria of drug-like candidates, having good adsorption, distribution, metabolism, excretion, and toxicity (ADMET) pharmacokinetic profile. Altogether, the present study suggests the therapeutic potential of SCOV-L series for preventing and managing SARs-COV-2 infection and are currently under detailed investigation in our lab.

5.
Curr Top Med Chem ; 2023 Jan 26.
Article in English | MEDLINE | ID: covidwho-2224630

ABSTRACT

Coronavirus disease (COVID-19) was reported to be transmitted from bats to humans and, became a pandemic in 2020. COVID-19 is responsible for millions of deaths worldwide and still, the numbers are increasing. Further, despite the availability of vaccines, mutation in the virus continuously poses a threat of re-emergence of the more lethal form of the virus. So far, the repurposing of drugs has been exercised heavily for the identification of therapeutic agents against COVID-19, which led FDA to approve many drugs for the same e.g., remdesivir, favipiravir, ribavirin, etc. The anti-COVID drugs explored via other approaches include nirmatrelvir (used in combination with ritonavir as Paxlovid), tixagevimab and cilgavimab (both used in combination with each other) and others. However, these approved drugs failed to achieve a significant clinical outcome. Globally, natural bioactive have also been explored for anti-COVID-19 effects, based on their traditional medicinal values. Although the clinical findings suggest that FDA-approved drugs and natural bioactives can help reducing the overall mortality rate but the significant clinical outcome was not achieved. Therefore, the focus has been shifted towards new drug development. In line with that, a lot of work has been done and still going on to explore heterocyclic compounds as potent anti-COVID-19 drugs. Several heterocyclic scaffolds have been previously reported with potent antiinflammatory, anticancer, anti-viral, antimicrobial and anti-tubercular effects. Few of them are under consideration for clinical trials whereas others are under preclinical investigation. Hence, this review discusses the evidence of rationally designed and tested heterocyclic compounds acting on different targets against COVID-19. The present manuscript will help the researches and will serve as a pivotal resource in the design and development of novel anti-COVID-19 drugs.

6.
Expert Opin Drug Discov ; 18(3): 247-268, 2023 03.
Article in English | MEDLINE | ID: covidwho-2222435

ABSTRACT

INTRODUCTION: Emergence of highly infectious SARS-CoV-2 variants are reducing protection provided by current vaccines, requiring constant updates in antiviral approaches. The virus encodes four structural and sixteen nonstructural proteins which play important roles in viral genome replication and transcription, virion assembly, release , entry into cells, and compromising host cellular defenses. As alien proteins to host cells, many viral proteins represent potential targets for combating the SARS-CoV-2. AREAS COVERED: Based on literature from PubMed and Web of Science databases, the authors summarize the typical characteristics of SARS-CoV-2 from the whole viral particle to the individual viral proteins and their corresponding functions in virus life cycle. The authors also discuss the potential and emerging targeted interventions to curb virus replication and spread in detail to provide unique insights into SARS-CoV-2 infection and countermeasures against it. EXPERT OPINION: Our comprehensive analysis highlights the rationale to focus on non-spike viral proteins that are less mutated but have important functions. Examples of this include: structural proteins (e.g. nucleocapsid protein, envelope protein) and extensively-concerned nonstructural proteins (e.g. NSP3, NSP5, NSP12) along with the ones with relatively less attention (e.g. NSP1, NSP10, NSP14 and NSP16), for developing novel drugs to overcome resistance of SARS-CoV-2 variants to preexisting vaccines and antibody-based treatments.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , SARS-CoV-2/genetics , Viral Nonstructural Proteins/metabolism , Viral Proteins/metabolism
7.
Computational Approaches for Novel Therapeutic and Diagnostic Designing to Mitigate SARS-CoV2 Infection: Revolutionary Strategies to Combat Pandemics ; : 49-76, 2022.
Article in English | Scopus | ID: covidwho-2149125

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome-Coronavirus-2 (SARS-CoV-2) is one of the worst human health problems faced by humanity in recent centuries. An end to this health crisis relies on our ability to monitor viral transmission dynamics to check spread, develop therapeutics and preventatives for treatment of SARS-CoV-2 infection and understand the pathophysiology of the disease for better management of the patients. Omics technologies have played a crucial part in understanding the different aspects of COVID-19 disease. While whole-genome sequencing of SARS-CoV-2 isolates from across the globe has aided in the development of molecular diagnostic assays and informed about the viral evolution, knowledge of structure and function of viral proteome fueled the development of small molecule and biologicals therapeutics as well as vaccines. Concurrently, metabolomic profiling of samples from COVID-19 patients experiencing a varying level of disease severity has provided a snapshot of the pathophysiology of the disease helping device effective treatment regimen. This chapter deals with genomic, proteomic, and metabolomic profiling of SRAS-CoV-2. © 2022 Elsevier Inc. All rights reserved.

8.
Viruses ; 14(11)2022 Nov 02.
Article in English | MEDLINE | ID: covidwho-2099859

ABSTRACT

Protein phosphorylation is a post-translational modification that enables various cellular activities and plays essential roles in protein interactions. Phosphorylation is an important process for the replication of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). To shed more light on the effects of phosphorylation, we used an ensemble of neural networks to predict potential kinases that might phosphorylate SARS-CoV-2 nonstructural proteins (nsps) and molecular dynamics (MD) simulations to investigate the effects of phosphorylation on nsps structure, which could be a potential inhibitory target to attenuate viral replication. Eight target candidate sites were found as top-ranked phosphorylation sites of SARS-CoV-2. During the process of molecular dynamics (MD) simulation, the root-mean-square deviation (RMSD) analysis was used to measure conformational changes in each nsps. Root-mean-square fluctuation (RMSF) was employed to measure the fluctuation in each residue of 36 systems considered, allowing us to evaluate the most flexible regions. These analysis shows that there are significant structural deviations in the residues namely nsp1 THR 72, nsp2 THR 73, nsp3 SER 64, nsp4 SER 81, nsp4 SER 455, nsp5 SER284, nsp6 THR 238, and nsp16 SER 132. The identified list of residues suggests how phosphorylation affects SARS-CoV-2 nsps function and stability. This research also suggests that kinase inhibitors could be a possible component for evaluating drug binding studies, which are crucial in therapeutic discovery research.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Molecular Dynamics Simulation , Viral Nonstructural Proteins/metabolism , Phosphorylation , Virus Replication
9.
Heliyon ; 8(7): e09910, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-2000432

ABSTRACT

The first cases of the novel coronavirus, SARS-CoV-2, were detected in December 2019 in Wuhan, China. Nucleotide substitutions and mutations in the SARS-CoV-2 sequence can result in the evolution of the virus and its rapid spread across the world. Therefore, understanding genetic variants of SARS-CoV-2 and targeting the conserved elements responsible for viral replication have great benefits for detecting its infection sources and diagnosing and treating COVID-19. In this study, we used the SARS-CoV-2 sequence isolated from a 59-year-old man in Ardabil, Iran, in April 2020 and sequenced using Oxford Nanopore technology. A meta-analysis comparing the sequence under study with other sequences from Iran indicated long nucleotide insertions/deletions (indels) that code for NSP15, the NSP14-NSP10 complex, open reading frame ORF9b, and ORF1ab polyproteins. In addition, replicating the NSP8 protein in the study sequence is another topic that can affect viral replication. Then using the DNA structure of NSP8, NSP15, NSP14-NSP10 complex, and ORF1ab as a genetic target can help find drug-like compounds for COVID-19. Potential drug-like compounds reported in this study for their mechanism of action and interactions with SARS-CoV-2 genes using drug repurposing are resveratrol, erythromycin, chloramphenicol, indomethacin, ciclesonide, and PDE4 inhibitor. Ciclesonide appears to show the best results when docked with chosen viral proteins. Therefore, different proteins isolated from nucleotide mutations in the virus sequence can indicate distinct inducers for antibodies and are important in vaccine design.

10.
Int J Mol Sci ; 23(11)2022 May 29.
Article in English | MEDLINE | ID: covidwho-1869638

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become the most severe health crisis, causing extraordinary economic disruption worldwide. SARS-CoV-2 is a single-stranded RNA-enveloped virus. The process of viral replication and particle packaging is finished in host cells. Viral proteins, including both structural and nonstructural proteins, play important roles in the viral life cycle, which also provides the targets of treatment. Therefore, a better understanding of the structural function of virus proteins is crucial to speed up the development of vaccines and therapeutic strategies. Currently, the structure and function of proteins encoded by the SARS-CoV-2 genome are reviewed by several studies. However, most of them are based on the analysis of SARS-CoV-1 particles, lacking a systematic review update for SARS-CoV-2. Here, we specifically focus on the structure and function of proteins encoded by SARS-CoV-2. Viral proteins that contribute to COVID-19 infection and disease pathogenesis are reviewed according to the most recent research findings. The structure-function correlation of viral proteins provides a fundamental rationale for vaccine development and targeted therapy. Then, current antiviral vaccines are updated, such as inactive viral vaccines and protein-based vaccines and DNA, mRNA, and circular RNA vaccines. A summary of other therapeutic options is also reviewed, including monoclonal antibodies such as a cross-neutralizer antibody, a constructed cobinding antibody, a dual functional monoclonal antibody, an antibody cocktail, and an engineered bispecific antibody, as well as peptide-based inhibitors, chemical compounds, and clustered regularly interspaced short palindromic repeats (CRISPR) exploration. Overall, viral proteins and their functions provide the basis for targeted therapy and vaccine development.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/prevention & control , Humans , SARS-CoV-2 , Viral Proteins
11.
Med Hypotheses ; 161: 110798, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1763894

ABSTRACT

Coronaviruses have received worldwide attention following several severe acute respiratory syndrome (SARS) epidemics. In 2019, the first case of coronavirus disease (COVID-19) caused by a novel coronavirus (SARS-coronavirus 2 [CoV-2]) was reported. SARS-CoV-2 employs RNA-dependent RNA polymerase (RdRp) for genome replication and gene transcription. Recent studies have identified a sulfur (S) metal-binding site in the zinc center structures of the RdRp complex. This metal-binding site is essential for the proper functioning of the viral helicase. We hypothesize that the use of essential nutrients can permeabilize the cell membranes. The oxidation of the metal-binding site occurs via analogs of the essential S-containing amino acid, l-Methionine. l-Methionine can operate as a carrier, and its binding would cause the potential disassembly of RdRp via the S complex and drive methyl donors via a possible countercurrent exchange mechanism and electrical-chemical gradient leading to SARS-CoV-2 replication failure. Our previously published hypothesis on the control of cancer cell proliferation suggests that the presence of a novel disulfide/methyl- adenosine triphosphate pump as an energy source would allow this process. The S binding site in l-Methionine serves as a potential target cofactor for SARS-CoV RdRp, thus providing a possible avenue for the future development of vaccines and antiviral therapeutic strategies to combat COVID-19.

12.
Chin J Integr Med ; 28(3): 249-256, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1588737

ABSTRACT

OBJECTIVE: To explore potential natural products against severe acute respiratory syndrome coronavirus (SARS-CoV-2) via the study of structural and non-structural proteins of human coronaviruses. METHODS: In this study, we performed an in-silico survey of 25 potential natural compounds acting against SARS-CoV-2. Molecular docking studies were carried out using compounds against 3-chymotrypsin-like protease (3CLPRO), papain-like protease (PLPRO), RNA-dependent RNA polymerase (RdRp), non-structural protein (nsp), human angiotensin converting enzyme 2 receptor (hACE2R), spike glycoprotein (S protein), abelson murine leukemia viral oncogene homolog 1 (ABL1), calcineurin-nuclear factor of activated T-cells (NFAT) and transmembrane protease serine 2. RESULTS: Among the screened compounds, amentoflavone showed the best binding affinity with the 3CLPRO, RdRp, nsp13, nsp15, hACE2R. ABL1 and calcineurin-NFAT; berbamine with hACE2R and ABL1; cepharanthine with nsp10, nsp14, nsp16, S protein and ABL1; glucogallin with nsp15; and papyriflavonol A with PLPRO protein. Other good interacting compounds were juglanin, betulinic acid, betulonic acid, broussooflavan A, tomentin A, B and E, 7-methoxycryptopleurine, aloe emodin, quercetin, tanshinone I, tylophorine and furruginol, which also showed excellent binding affinity towards a number of target proteins. Most of these compounds showed better binding affinities towards the target proteins than the standard drugs used in this study. CONCLUSION: Natural products or their derivatives may be one of the potential targets to fight against SARS-CoV-2.


Subject(s)
Biological Products , COVID-19 Drug Treatment , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Biological Products/pharmacology , Humans , Mice , Molecular Docking Simulation , SARS-CoV-2
13.
Future Med Chem ; 14(2): 61-79, 2022 01.
Article in English | MEDLINE | ID: covidwho-1534390

ABSTRACT

Background: Conserved domains within SARS-CoV-2 nonstructural proteins represent key targets for the design of novel inhibitors. Methods: The authors aimed to identify potential SARS-CoV-2 NSP5 inhibitors using the ZINC database along with structure-based virtual screening and molecular dynamics simulation. Results: Of 13,840 compounds, 353 with robust docking scores were initially chosen, of which ten hit compounds were selected as candidates for detailed analyses. Three compounds were selected as coronavirus NSP5 inhibitors after passing absorption, distribution, metabolism, excretion and toxicity study; root and mean square deviation; and radius of gyration calculations. Conclusion: ZINC000049899562, ZINC000169336666 and ZINC000095542577 are potential NSP5 protease inhibitors that warrant further experimental studies.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/metabolism , Drug Discovery , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2/enzymology , COVID-19 Drug Treatment
14.
Cell Rep ; 36(5): 109482, 2021 08 03.
Article in English | MEDLINE | ID: covidwho-1312984

ABSTRACT

Bearing a relatively large single-stranded RNA genome in nature, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes sophisticated replication/transcription complexes (RTCs), mainly composed of a network of nonstructural proteins and nucleocapsid protein, to establish efficient infection. In this study, we develop an innovative interaction screening strategy based on phase separation in cellulo, namely compartmentalization of protein-protein interactions in cells (CoPIC). Utilizing CoPIC screening, we map the interaction network among RTC-related viral proteins. We identify a total of 47 binary interactions among 14 proteins governing replication, discontinuous transcription, and translation of coronaviruses. Further exploration via CoPIC leads to the discovery of extensive ternary complexes composed of these components, which infer potential higher-order complexes. Taken together, our results present an efficient and robust interaction screening strategy, and they indicate the existence of a complex interaction network among RTC-related factors, thus opening up opportunities to understand SARS-CoV-2 biology and develop therapeutic interventions for COVID-19.


Subject(s)
COVID-19/virology , Protein Interaction Mapping/methods , Proteome , SARS-CoV-2/pathogenicity , Viral Nonstructural Proteins/physiology , Animals , Caco-2 Cells , Cell Compartmentation , Cell Line , Chlorocebus aethiops , HEK293 Cells , Humans , Protein Interaction Maps , Vero Cells , Virus Replication
15.
Comput Biol Med ; 135: 104611, 2021 08.
Article in English | MEDLINE | ID: covidwho-1293683

ABSTRACT

RNA-protein interactions of a virus play a major role in the replication of RNA viruses. The replication and transcription of these viruses take place in the cytoplasm of the host cell; hence, there is a probability for the host RNA-viral protein and viral RNA-host protein interactions. The current study applies a high-throughput computational approach, including feature extraction and machine learning methods, to predict the affinity of protein sequences of ten viruses to three categories of RNA sequences. These categories include RNAs involved in the protein-RNA complexes stored in the RCSB database, the human miRNAs deposited at the mirBase database, and the lncRNA deposited in the LNCipedia database. The results show that evolution not only tries to conserve key viral proteins involved in the replication and transcription but also prunes their interaction capability. These proteins with specific interactions do not perturb the host cell through undesired interactions. On the other hand, the hypermutation rate of NSP3 is related to its affinity to host cell RNAs. The Gene Ontology (GO) analysis of the miRNA with affiliation to NSP3 suggests that these miRNAs show strongly significantly enriched GO terms related to the known symptoms of COVID-19. Docking and MD simulation study of the obtained miRNA through high-throughput analysis suggest a non-coding RNA (an RNA antitoxin, ToxI) as a natural aptamer drug candidate for NSP5 inhibition. Finally, a significant interplay of the host RNA-viral protein in the host cell can disrupt the host cell's system by influencing the RNA-dependent processes of the host cells, such as a differential expression in RNA. Furthermore, our results are useful to identify the side effects of mRNA-based vaccines, many of which are caused by the off-label interactions with the human lncRNAs.


Subject(s)
COVID-19 , MicroRNAs , Humans , SARS-CoV-2 , Viral Proteins/genetics , Virus Replication
16.
J Comput Biol ; 28(9): 909-921, 2021 09.
Article in English | MEDLINE | ID: covidwho-1286546

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for the disease coronavirus-19 disease (COVID-19) has wreaked havoc on the health and economy of humanity. In addition, the disease is observed in domestic and wild animals. The disease has impacted directly and indirectly every corner of the planet. Currently, there are no effective therapies for the treatment of COVID-19. Vaccination to protect against COVID-19 started in December 2020. SARS-CoV-2 is an enveloped virus with a single-stranded RNA genome of 29.8 kb. More than two-thirds of the genome comprise Orf1ab encoding 16 nonstructural proteins (nsps) followed by mRNAs encoding structural proteins, spike (S), envelop (E), membrane (M), and nucleocapsid (N). These genes are interspaced with several accessory genes (open reading frames [Orfs] 3a, 3b, 6, 7a, 7b, 8, 9b, 9c, and 10). The functions of these proteins are of particular interest for understanding the pathogenesis of SARS-CoV-2. Several of the nsps (nsp3, nsp4, and nsp6) and Orf3a are transmembrane proteins involved in regulating the host immunity, modifying host cell organelles for viral replication and escape and hence considered drug targets. In this paper, we report mapping the transmembrane structure of the nsps of SARS-CoV-2.


Subject(s)
SARS-CoV-2/genetics , Viral Nonstructural Proteins/chemistry , Protein Conformation , SARS-CoV-2/chemistry , Viral Nonstructural Proteins/genetics
17.
Front Mol Biosci ; 8: 653148, 2021.
Article in English | MEDLINE | ID: covidwho-1247882

ABSTRACT

The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium's collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form.

18.
Adv Exp Med Biol ; 1318: 23-39, 2021.
Article in English | MEDLINE | ID: covidwho-1222705

ABSTRACT

The ongoing coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is highly contagious and fatal, posing a direct threat to human health and the global economy. Most strategies to prevent, control, and eradicate COVID-19 are established based on the specific characteristics of the pathogen. The quest for interruption and eradication of COVID-19 has moved research forward in understanding fundamental aspects of the virus genome, proteome, replication mechanisms, and virus-host interactions, which pave the way for the development of effective antiviral drugs and vaccines. This chapter provides an overview of recent progress in human coronavirus taxonomy, molecular features of the SARS-CoV-2 genome and proteome, and virus life cycle.


Subject(s)
COVID-19 , Coronavirus , SARS-CoV-2 , Antiviral Agents/therapeutic use , Classification , Coronavirus/genetics , Coronavirus/pathogenicity , Genome, Viral/genetics , Humans
19.
Microchem J ; 167: 106305, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1198979

ABSTRACT

Since December 2019, we have been in the battlefield with a new threat to the humanity known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this review, we describe the four main methods used for diagnosis, screening and/or surveillance of SARS-CoV-2: Real-time reverse transcription polymerase chain reaction (RT-PCR); chest computed tomography (CT); and different complementary alternatives developed in order to obtain rapid results, antigen and antibody detection. All of them compare the highlighting advantages and disadvantages from an analytical point of view. The gold standard method in terms of sensitivity and specificity is the RT-PCR. The different modifications propose to make it more rapid and applicable at point of care (POC) are also presented and discussed. CT images are limited to central hospitals. However, being combined with RT-PCR is the most robust and accurate way to confirm COVID-19 infection. Antibody tests, although unable to provide reliable results on the status of the infection, are suitable for carrying out maximum screening of the population in order to know the immune capacity. More recently, antigen tests, less sensitive than RT-PCR, have been authorized to determine in a quicker way whether the patient is infected at the time of analysis and without the need of specific instruments.

20.
Drug Dev Res ; 2020 Jul 13.
Article in English | MEDLINE | ID: covidwho-955056

ABSTRACT

Currently, the pandemic coronavirus disease 2019 (COVID-19) has unprecedentedly captivated its human hosts by causing respiratory illnesses because of evolution of the genetic makeup of novel coronavirus (CoV) known as severe acute respiratory syndrome coronavirus-2 (SARS CoV-2). As much as the researchers are inundated for the quest of effective treatments from available drugs, the discovery and trials of new experimental drugs are also at a threshold for clinical trials. There has been much concern regarding the new and targeted drugs considering the comprehensive ambiguity regarding the mechanism and pathway of the drug action with respect to the new and unpredictable structural and nonstructural proteins (NSPs) of SARS CoV-2. This study was aimed to discuss functional pathways related to NSPs in CoVs with updated knowledge regarding SARS CoV-2, mechanisms of action of certain approved and investigational drugs for correct orientation regarding the treatment strategies, including nucleotide analog mechanism, receptor analog mechanism, and peptide-peptide interactions, along with the impact of COVID-19 on a global scale. Although there is a dire need for targeted drugs against SARS CoV-2, the practical achievement of its cure is possible by only using effective drugs with appropriate mechanisms to eliminate the disease.

SELECTION OF CITATIONS
SEARCH DETAIL